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Introduction

This report describes intelligent agents that
function as air traffic controllers. Each
agent controls traffic in a single sector in
real time; agents controlling traffic in
adjoining sectors can coordinate to
manage an arrival flow across a given
meter fix.

The purpose of this research is threefold.
First, it seeks to study the design of agents
for controlling complex systems. In
particular, it investigates agent planning
and reactive control functionality in a
dynamic environment in which a variety of
perceptual and decision making skills play
a central role. It examines how heuristic
rules can be applied to model planning
and decision making skills, rather than
attempting to apply optimization methods.
Thus, the research attempts to develop
intelligent agents that provide an
approximation of human air traffic
controller behavior that, while not based
on an explicit cognitive model, does
produce task performance consistent with
the way human air traffic controllers
operate.

Second, this research sought to extend
previous research on using the Crew
Activity Tracking System (CATS)
(Callantine, Mitchell, and Palmer, 1999) as
the basis for intelligent agents (Callantine,
2001). The agents use a high-level model
of air traffic controller activities to
structure the control task. To execute an
activity in the CATS model, according to
the current task context, the agents
reference a ‘skill library’ and ‘control
rules’ that in turn execute the pattern
recognition, planning, and decision-
making required to perform the activity.
Applying the skills enables the agents to
modify their representation of the current
control situation (i.e., the ‘flick’ or
‘picture’). The updated representation

supports the next activity in a cycle of
action that, taken as a whole, simulates air
traffic controller behavior.

A third, practical motivation for this
research is to use intelligent agents to
support evaluation of new air traffic
control (ATC) methods to support new Air
Traffic Management (ATM) concepts.
Current approaches that use large, human-
in-the-loop simulations are unquestionably
valuable for this purpose (e.g., Callantine,
Prevôt, Smith, and Palmer, 2001; Battiste,
et al., 2002; Raytheon, 2002), but pose
considerable logistical, fiscal, and
experimental control problems. First, data
analysis is extremely complicated, owing
simply to the large number of participants
and data sources in such simulations. In
addition, experienced human air traffic
controllers working adjacent sectors tend
to flexibly adapt to the evolving control
problem – potentially shifting to other
strategies than those under investigation.
In addition, their performance is tightly
coupled to the control interface, which in
the development phase may support some
concepts and supporting strategies better
than others. A simple shift in strategy by
one controller can change the character of
a particular traffic scenario dramatically,
which makes experimental comparison of
ATC performance under different traffic
scenarios difficult. Training a given team
of controllers on operations under a new
ATM concept for a sufficient period of
time could avert such difficulties, but
instituting an adequate training program is
expensive and logistically difficult.

A more expeditious and inexpensive
approach involves testing concepts and
interfaces in a part-task setting, in which
one human controller subject coordinates
with agents controlling traffic in adjacent
sectors. Using agents this way ensures that
the traffic ‘feed’ to the subject controller
has been ‘conditioned’ by controlling it
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according to a specific ATC strategy
dictated by developers of the ATM
concept and embodied in the supporting
agents. This report qualifies the current-
day (‘vectoring’) conditions under which
the agents currently operate and what
additional capabilities are required to use
them with new ATM concepts in this
capacity.

Related Modeling Research
Modeling air traffic controller behavior
has generated considerable interest in
recent years. Before presenting the CATS
agents, this report provides some
background on related work. Modeling
efforts focus on (1) understanding features
of ATC as it impacts the performance of
National Airspace System (NAS) ATM, (2)
constructing models of operators in
complex environments, and (3)
embodying such models in intelligent
agents.

A model that focuses on NAS
performance is MITRE’s Detailed Policy
Assessment Tool (DPAT) (Heimerman,
1997; Schaefer and Millner, 2001). DPAT
is a fast-time simulation of NAS
operations; however, it does not model air
traffic controller control actions. Another
tool, called the Reorganized ATC
Mathematical Simulator (RAMS) was
developed as part of the FAA/NASA
Aviation System Analysis Capability
Program (Mondoloni, 1998). RAMS uses
rules to resolve conflicts in en route air
traffic. It selects a single resolution for a
single aircraft that does not create any new
conflicts with any other aircraft. RAMS’
performance was compared to that of
actual controllers resolving the same
conflicts, and found to be agreeable.
However, the global focus of RAMS is
reflected in some of the resolutions it
constructs.

Other research has focused on modeling
the air traffic control task. Dowell (1998)

developed an ecological model and used it
to derive the ‘cognitive costs’ associated
with monitoring, planning, and control
incurred by a human subject controlling
air traffic. Other researchers have
conducted empirical analyses of how
experienced air traffic controllers assess
traffic situations (Niessen, Eyferth, and
Bierwagen, 1999), and used them to
construct a computational cognitive model
of the air traffic controller’s task based on
the ACT-R framework (Niessen, Leuchter,
and Eyferth, 1998). The resulting model
(called ‘MoFl’) was used primarily to
investigate the construction of the
controller’s ‘picture’ of the traffic
situation. While the quality of ATC it
simulates is not discussed, the researchers
note MoFl was useful as the basis for
developing a computer-based tutoring
system for training situation awareness
strategies (Niessen and Eyferth, 2000).

Leiden (2000) also presents a model of en
route controller performance,
implemented as a task network model
using the MicroSaint modeling tool. The
model was not explicitly evaluated for its
ability to control air traffic, but instead as a
tool for producing predictive human
performance measures. Hexmoor and
Heng (2000) developed agents for
assisting a human tower controller, based
on a shared control scheme in which the
agents assume control when the human has
allowed a situation to become critical. The
agents construct prioritized cues of aircraft
in a small tower simulation, and use them
to detect and resolve conflicts and manage
landing clearances.

Finally, ATC agents have been developed
that incorporate a model of information
processing, situation assessment, and
decision making and procedure execution
(called ‘SAMPLE’) to represent
distributed decision making in future Air
Traffic Management (ATM) systems
(Harper, et al., 2002). Agents representing
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pilots, controllers, and other participants in
the NAS attempt to negotiate solutions to
en route conflicts and airspace violations.
The agents handled level-flight conflicts
using heading and speed resolutions with a
high degree of effectiveness.

In summary, the SAMPLE agents and the
RAMS system appear to be the only
computational ATC agents that have been
evaluated for controlling traffic in a
closed-loop simulation. Both focus on
conflict detection and resolution. RAMS
operates over all flight phases, while the
SAMPLE agent research has focused on
en route airspace, with a focus on
negotiation between agents. RAMS is
nominally a mathematical simulation,
whereas the SAMPLE model attempts to
represent skilled human behavior
hierarchically, possibly providing a better
approximation of human performance.

CATS-based Agents
The CATS-based agents presented in this
report compare most closely to the
SAMPLE agents. They incorporate a
CATS model to represent the main aspects
of air traffic control – situation awareness,
problem identification, and clearance
formulation – in terms of hierarchically
decomposed activities. As the agents
perform activities, they access skills and
control rules, then update their
representation of the current operational
context, which enables them to perform
their next activity.

The agents use heading, route, altitude, and
speed clearances to space aircraft in an
arrival flow and resolve conflicts as
current-day air traffic controllers might,
by applying heuristic rules to plan and
issue clearances; the agents do not use
global optimization methods. Agents in
different sectors control traffic from cruise
to meter fix crossing (no departures or
overflights are as yet included in the traffic
scenarios). Thus, the agents address both

en route and arrival control problems,
including merging traffic flows.
Specifically, agents in en route sectors
attempt to space aircraft a specified
distance in trail (even across flows, if
applicable). Agents in low altitude (feeder)
sectors attempt to merge arrival traffic and
achieve a specified spacing across the
meter fix.

The remainder of this report is organized
as follows. It first describes the CATS
agent approach, and the agent
coordination architecture. It then describes
the CATS model that represents controller
activities, discusses the skills and priorities
key activities use, and the flow of control
that results when the agents execute
activities in real time according to the
CATS model. It then describes the rules
and skills used to space and separate
aircraft. These activities may lead the
agents to formulate plans; the report
details the plans and triggers for executing
a particular plan. Finally, the report
presents results of applying the agents to
control arrival traffic, and discusses
directions for further research.

CATS Agents

CATS ‘activity tracking’ applications use
a model of hierarchically decomposed
activities to predict what activities the
human operator should perform in a given
operational context, and then use these
predictions as the basis for interpreting
actual operator actions as correct or in
error. CATS-based agents are designed to
supplant the human operator; they simply
execute the activities predicted according
the model to control a simulated
controlled system (Callantine, 2001).

CATS activity tracking applications take
data on the state of the controlled system,
and the constraints on controlled system
trajectory that define the operator’s goals,
and use these data to generate a summary
of the current operational context. The



4

context represents the true state of the
world, to the extent possible. CATS agents,
on the other hand, maintain an internal set
of ‘beliefs’ that may or may not (in the
case of agents that err) reflect the true state
of world and the attendant operational
context.

The type of activity a CATS agent is
executing determines how the agents
processes beliefs when executing it.
Performing a perceptual activity entails
transforming information found in a
representation of the appropriate visual or
auditory ‘display’ into a set of ‘beliefs’
about the information. Performing a
cognitive activity entails further
assimilation of information already present
in the agent’s belief set, to produce beliefs
at different levels of abstraction and/or
aggregation, or the results of a decision
making process. Manual activities entail
executing the activity using a given
control; verbal activities entail transmitting
some information to another agent.
Underlying this scheme is the theory that
all salient activities involve transforming or
communicating contextual information.

Multi-agent Architecture
Multiple CATS agents operating together
have to date relied on a synchronous,
‘tick-based’ architecture to control
processing. A central controller sends each
agent a message on each ‘tick’ (typically
one second in duration) that cues each

agent to perform a single processing cycle.
A processing cycle consists of using the
representation of the current operational
context to predict which activities need to
be performed, and executing those
activities. This works well for CATS
models structured to enable agents to
perform multiple activities at once, in
situations where the performance of
individual agents is tightly coupled. The
flight crew agents discussed by Callantine
(2001) provide an example: the agent that
represents the pilot-not-flying can set a
target value using the Mode Control Panel
of the aircraft while simultaneously
listening for an ATC instruction on the
radio.

As the results section of this report
indicates, this scheme is not ideally suited
for air traffic controller agents;
nonetheless, it was applied as a starting
point, as depicted in Figure 1. The
architecture uses an ‘Agent Hub’ process
to connect to an Aeronautical Data link
and Radar Simulator (ADRS) process.
ADRS’s function as simulation hubs for
the overall air traffic simulation (Prevôt,
Palmer, Smith, and Callantine, 2002). The
Agent Hub provides four critical functions
beyond synchronizing the agent
processing times. First, it receives aircraft
data from the ADRS and provides it to the
agents each time the traffic display is
updated (i.e., every twelve seconds).
Second, it forwards clearances produced

Agent Hub ADRS

Agent 1 Agent 2 Agent n...
Figure 1. Generic CATS ATC agent architecture.
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by the agents to the ADRS, which forwards
them to the aircraft simulation. Third, it
forwards handoff requests and accepts to
the appropriate agent, and finally, it
forwards aircraft flight plan and clearance
constraint information from an ‘upstream’
agent to a ‘downstream’ agent. Thus,
when an aircraft is handed off, the
upstream agent makes flight plan and
clearance information, traditionally
recorded on ‘flight progress strips,’
available to the next controller agent.

CATS Agent Architecture
The CATS ATC agent architecture is
derived from the CATS flight deck agents
described in Callantine (2001). Figure 2
depicts how knowledge representations in
the air traffic controller agents inform
each other. The agent hub provides each
agent with information about aircraft
shown on the agent’s traffic display, as
well as information on aircraft flight plan

constraints and handoffs. The agents have
a representation of beliefs about the
current task context, and a CATS model
that specifies the high-level activity
structure. The agent uses its task context
beliefs to select an activity to perform
during a given processing cycle from its
activity model. The activity model
represents information about how the
activity transforms beliefs. The ‘Belief
Transformer’ uses this information to
access a library of skills to generate beliefs
that summarize or reformulate traffic
information presented on its display, or
access a set of control rules to formulate a
clearance to issue an aircraft. Control rules
may themselves use information from the
skill library to support the decision
making process. Regardless of the
particular activity the agent performs, the
agent’s belief set is in some way
transformed, by adding, removing, or
altering the agent’s beliefs about the

Beliefs
– Task context
– Situation

CATS
Activity
Model

Skill Library Control Rules

Constraints

Traffic Display/
Aircraft

Agent
Hub

CATS ATC Agent

‘Belief
Transformer’

Traffic state
Handoff requests/accepts
Flight plans

Target/data block
information

Flight plans/Updates

Clearances
Handoff requests/accepts
Updated flight plans

Task context

Situation

Updated
situation

Current
activity

Traffic assessments
Clearance values

Traffic assessm
ents

‘Problem’ aircraft

UpdatesUpdates

Values Values

Clearances

Figure 2. Information flow in CATS ATC Agents.
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situation, and by changing the agent’s
beliefs about the task context to reflect that
the particular activity was performed.

Beliefs that represent the current
operational context (both the task context,
and situational elements of the controlled
system) are central to the CATS agent
architecture. The agents also use beliefs to
represent retrospective context (memory
for what the agent has done) and
prospective memory for planned activities.
Through belief manipulations, the agents
implement a prospective memory process
model that resembles that of Kliegel,
Martin, McDaniel, and Einstein (2002).
The CATS agents must perform planning
in the context of reactive control, because
heuristics do not always consider the
impact of aircraft just ‘outside’ the
problem of interest. For example, an agent
may identify two aircraft to be in conflict,
but in applying heuristics represented in
the control rules to generate a solution, the
agent may not consider the impact of
aircraft immediately behind a conflict

aircraft. By planning to issue a clearance
to solve the conflict, rather than issuing the
clearance right away, the agent has the
option to adapt the plan if the conditions
necessary to execute it turn out not to be
met by the evolving situation. Plans are
stored, so that the agent can ‘remember’
them and evaluate the conditions for
executing them.

In general, the control rules govern which
clearances should be issued or planned.
Agents use the skill library to assess
information on the traffic display, and in
some cases to formulate clearance values.
Examples of skills are detecting conflicts,
determining spacing relationships between
aircraft, and determining the exact value of
a heading vector to issue. Some perceptual
activities are purely skill-based, while some
cognitive activities reference control rules
that require accessing skills themselves.
The following sections provide additional
detail on key elements of the CATS agent
architecture.

• Maintain situation awareness
– Monitor traffic display
– Scan aircraft

• Determine aircraft to work
• Manage handoffs

– Accept aircraft
• Accept handoff
• Roger check-in

– Initiate handoff
• Inform other controller
• Issue frequency change

• Manage descents
– Issue descent clearance

• Manage separation
– Evaluate separation clearance options
– Issue separation clearance

• Manage spacing
– Evaluate spacing clearance options
– Issue spacing clearance

• Manage nonconformance
– Re-issue clearance

Figure 3. CATS model for ATC agents.
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CATS Model
Each agent encapsulates an activity model
to drive the high-level selection of
activities to perform. The model represents
activities hierarchically, down to the level
of actions. The CATS model developed
for the CATS air traffic controller agents is
shown in Figure 3. The model is roughly
comprised of three pieces. The first is the
‘maintain situation awareness’ activity, and
its children, ‘monitor traffic display,’ and
‘scan aircraft.’ These activities are devoted
to gathering information from displayed
traffic information. A second portion is
the ‘determine aircraft to work’ activity,
which represents the activity of selecting a
problem to address from those currently
identified.

The third portion is a collection of
‘manage’ activities that are performed
based on the outcome of the ‘determine
aircraft to work’ activity. Accepting and
initiating handoffs are represented by the
‘manage handoffs’ activity. Note that
because the agents operate closed-loop via
the ADRS connection, the ‘roger check-
in’ and ‘issue frequency change’ activities
are not required for this implementation,
and therefore appear grayed out in Figure
3. ‘Manage descents’ is devoted to
providing aircraft with a descent clearance
sometime before they reach their planned
top-of-descent points. ‘Manage descents’

uses knowledge about how far the aircraft
can be cleared, given the airspace
configuration, as well as control rules for
providing positive altitude separation.
‘Manage separation’ is the activity
devoted to resolving detected conflicts,
while ‘manage spacing’ addresses aircraft
that, while not technically in conflict, do
violate desired in-trail spacing goals.
Finally, ‘manage non-conformance’
addresses aircraft that are not presently in
compliance with their constraints; based on
the type of non-compliance (lateral,
vertical, or speed), the agents re-issue a
clearances as necessary to get the aircraft
to comply.

Returning now to the ‘maintain situation
awareness’ activity, its first sub-activity is
‘monitor traffic display,’ which simply
generates a belief that reflects which
aircraft are currently present in the agent’s
sector. The second sub-activity, ‘scan
aircraft,’ is devoted to identifying the
current control problems that exist for the
sector aircraft identified by ‘monitor
traffic display.’ Figure 4 presents a
detailed picture of the control problems
that the ‘scan aircraft’ activity identifies.
When an agent executes this activity, the
agent’s skill library is accessed to identify
each of the classes of control problems
shown in Figure 4. The activity produces
beliefs about the existence of various
problems that are then referenced by the

Identify:
– Aircraft with plans that need to be executed
– Conflicting aircraft
– Within-flow spacing problems
– Cross-flow spacing problems
– Aircraft that need descent clearances
– Non-conforming aircraft

– Handoffs that need to be accepted
– Handoffs that need to be initiated

Figure 4. Purpose of ‘Scan aircraft’ activity.
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‘determine aircraft to work’ activity. The
model, as implemented, does not
decompose the ‘scan aircraft’ activity into
‘identify’ activities. This cuts down
processing overhead somewhat, but there is
no technical reason that an agent could not
concurrently execute lower-level
‘identify’ activities for each of the
elements listed in Figure 4.

The ‘determine aircraft to work’ activity
identifies the aircraft or set of aircraft that
the controller should address next. When
executed, it references the beliefs created
during the ‘scan aircraft’ activity, then
selects the aircraft to work based on the
priorities shown in Figure 5. Note that
these priorities are established based on the
effectiveness of the mechanisms used to
identify the control problems as much as
how controllers are thought to prioritize
control problems. For instance, an actual
air traffic controller would most likely
assign a higher priority to non-
conforming aircraft. However, because the
agents can sometimes identify non-
conformance incorrectly, owing to the
need for further refinements to its
representation of clearance constraints (see
Callantine, 2002), non-conformance is
assigned a lower priority in the present
implementation.

The priorities shown in Figure 5 reflect the
critical importance of executing plans as

soon as the conditions for doing so are
met. For plans that consist of multiple
steps (e.g., vector an aircraft off its route,
then to a route-intercept heading, then
back on its flight plan route), later steps in
the plan may depend on earlier steps for
their success. Thus, it is important that the
early step is executed as soon as possible.
Conflicting aircraft receive the second
highest priority, as they may require the
most radical steps to address. In the
present implementation, in order for the
agents to generate a vector, aircraft must
be in conflict. Next are aircraft that need
to be spaced. The agents use speed
clearances to space aircraft, and it is
relatively easy to determine safe speeds.
Next after spacing aircraft are aircraft that
require descent clearances. The agents are
configured such that, in the absence of
conflicts during the descent, they are
certain to get aircraft down in time;
otherwise these aircraft would also receive
a higher priority. Finally, handoff
acceptance, and handoff initiation receive
lowest priority. This reflects observed
human air traffic controller behavior, in
that controllers typically do everything
else that needs to be done, then take (or
issue) several handoffs consecutively.

CATS Agent Beliefs
An important feature of the ‘determine
aircraft to work’ activity is, depending on

Priority:
1. Aircraft with executable plan
2. Conflict aircraft
3. Within-flow spacing problems
4. Cross-flow spacing problems
5. Aircraft that need a descent clearance
6. Aircraft that need to be handed off
7. Non-conforming aircraft
8. Handoffs that need to be accepted

Figure 5. Priority used for selecting control problems in the ‘determine aircraft to work’ activity.
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the results of the assessments it performs,
different beliefs are added to and removed
from the agent’s current set of beliefs
about task context. This is an extension of
the CATS agent framework presented in
Callantine (2001) (see Appendix A for a
discussion of the extended CATS model
file specification and associated processing
issues). The beliefs used to represent task
context are shown in Figure 6. In essence,
the last several beliefs (‘know which…’
and ‘… identified’) correspond to the type
of control problem identified in
‘determine aircraft to work.’ The ‘always’
belief ensures that the CATS model’s top-
level activity, ‘control traffic,’ is always
active, so that the top-down search used to
predict activities in CATS has the
opportunity to find one.

In addition to the task context information
that may be included in an agent’s belief
set, beliefs about the traffic control
situation may also be included. Figure 7
depicts some specific beliefs about the
current situation, memory for when
problems were last addressed, and
prospective memory for plans.
Retrospective memory for when problems
were last addressed is important because it
takes some time for the displayed traffic
information to reflect for the effects of a
clearance. Because the problem may

appear to continue to exist for a period of
time, without the ‘check’ beliefs an agent
will repeatedly address the same (higher
priority) problem to the exclusion of other
problems — even if they have actually
already addressed it. Prospective memory,
in the form of plans associated with
particular aircraft, and especially as
reflected in beliefs about an aircraft that
has a plan that needs to be executed
immediately, is a vital part of the CATS
agent scheme. This is because control rules
do not address ‘other’ aircraft that also
impact the control problem of interest.

The justification for including beliefs in
the format shown in Figure 7 is for
displaying them, and also in looking ahead
to a scheme for generating errors by

Check_cross_flow_spacing [time] [aircraft]
Check_within_flow_spacing [time] [aircraft]
Check_conflict [time] [aircraft]
Check_descent [time] [aircraft]
Cross_flow_spacing [aircraft clusters]
Within_flow_spacing [aircraft clusters]
Conflicts [aircraft clusters]
Sector_aircraft [aircraft]
Plan_exec [aircraft]

Figure 7. Traffic control situation context beliefs.

Always
Display needs scanning
Looked at traffic display
Have aircraft to work
Know which aircraft to accept
Know which aircraft to hand off
Know which aircraft to descend
Factors identified (refers to conflict aircraft)
Spacing aircraft identified
Know which aircraft to clear (separate)
Know which aircraft to space
Know which aircraft isn’t conforming

Figure 6. Task context beliefs.
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altering the contents of the beliefs. In the
current implementation, however, other
important information for applying the
control rules, retaining the contents of an
about-to-be-issued clearance, and of
course, the state and constraint information
for each aircraft, is maintained using
representational objects and variables in
code. The most important of these involves
‘role bindings’ for aircraft. The agents use
role bindings to provide a general way to
specify a frame of reference for the
application of control rules (see Horswill
and Zubek, 1999). When agents initially
execute the ‘monitor traffic display’
activity (the first activity to perform after
the traffic display is updated), they access
their skill library to ‘bind’ aircraft to
crucial roles (e.g., ‘inFront,’
‘inFrontSequence,’ ‘firstConflict,’ etc.).
For each bound role, the agents also access
perceptual skills to assign a bit-vector of
attributes. This information is simply too
fluid and too complex to represent as a
‘belief string’ (and would defeat the
purpose of representing it as a bit-vector to
begin with). This issue will be revisited
below, in the discussion of control rules.

Figure 8 summarizes how the agents work,
at the high level governed by the activity
model. In essence, the structure of the
activity model, and the beliefs about
control problems, plans, etc., yield a flow-
of-control that reflects the priorities used
by the ‘determine aircraft to work’
activity. The flow of control can be
considered at least somewhat congruent
with that observed in actual air traffic
controllers, although further research is
needed in this area. A comprehensive set
of priorities from experienced controllers
may be difficult to elicit at a more detailed
level than that of the situation assessment
studies performed by Niessen, et al.
(1999). This is because the context
information used is largely perceptual and
likely far richer, and the prioritization
process is more deeply ingrained as skill.

Control Rules
This section describes the heuristics the
agents use to determine clearances in the
current implementation. The agents have
two top-level entry points to the rule base
depending upon whether they are
addressing a ‘spacing problem,’ related to
putting aircraft a specified distance in trail,

Executable
Plan?

Conflict?

Spacing Problem?

Do plan or adapt
plan

Handoff
Needed?

Non-conformance?

Handoff accept
needed?

Descent
Needed?

Make plan to
resolve

Issue clearance
or plan to
resolve

Issue clearance

Do handoff

Re-issue
clearance

Accept handoff

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 8. Flow of control resulting from the CATS model used by the CATS ATC agents.
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or a ‘separation problem,’ related to
resolving a conflict, including those that
occur at a merge point. In general, the
agents solve spacing problems with speed,
and separation problems with vectors.
However, by adjusting what qualifies as a
conflict to use the in-trail spacing
requirement as the separation value, the
agents can solve spacing problems by
issuing vectors.

The agents use the spacing rules shown in
Figure 9. Four strategies to space aircraft
are incorporated in the rules: ‘speed
up/plan to match speeds,’ ‘stagger speeds,’
‘speed lead aircraft up,’ and ‘slow back
aircraft.’ The rules access two skills to
determine which rules to apply: ‘excess
spacing’ and ‘insufficient spacing.’ When
aircraft are evaluated by the spacing rules,
one is designated ‘front’ and the other is
designated ‘back.’ In cases where the
specified spacing is insufficient, the
strategy invoked is determined using the
role bindings attached to the ‘front’ and
‘back’ aircraft. Each of these aircraft, in
turn, has aircraft bound to roles called
‘inFront’ and ‘behind,’ and to the roles
‘inFrontSequence’ and
‘behindSequence.’ The latter role
bindings refer to aircraft that are actually
in front or behind, but are in ‘adjacent
flows’ (which is the case when two traffic
streams traverse a sector, to be merged in a

downstream sector). By referencing the
role bindings, the spacing rules can base
strategy determination on the presence of
‘other’ aircraft in the vicinity of the
spacing problem.

Agents can issue clearances immediately
for all of the spacing strategies, except
when there is excess spacing. In this case,
the agent immediately issues the back
aircraft clearance to accelerate to ‘close
the gap,’ and establishes a plan to match
the lead aircraft’s speed when the spacing
reaches the desired spacing. The plans that
the agents use are described in the section
that follows. As noted above, spacing
problems that occur in the midst of other
aircraft are handled by separation rules
using vectors.

Figure 10 shows the separation
(‘vectoring’) rules that the agents use.
Vectoring to resolve conflicts is more
complex than issuing speed clearances for
spacing, because nothing can be done
without prior planning. Rules are again
structured to reference a ‘front’ and
‘back’ aircraft and role bindings are used
to reference aircraft in the vicinity of those
in conflict. Because the agents only
address aircraft in arrival flows, conflict
angles are small, and as such, the ‘front’
and ‘back’ designations make sense.
Separation rules for ‘opposite direction’

• If excess spacing, speed up/plan to match speeds

• If insufficient spacing:
– If no aircraft in front of front or behind back, stagger

speeds
– If no aircraft in front of front, but aircraft behind

back, speed lead aircraft up
– If aircraft in front of front, but not behind back, slow

back aircraft
– If aircraft in front of front, and behind back, require

vectors (handle as conflict using separation rules)

Figure 9. CATS ATC agent spacing rules.
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conflicts, and conflicts between arrivals
and ‘other’ aircraft require a prioritization
scheme for which aircraft should best be
vectored, which is a subject of further
research.

Several skills are accessed by the
separation control rules. Specifically,
agents have a skill for determining whether
the conflict in question is a ‘merge
condition,’ and skills for assigning values
for each type of vectoring plan. A given
vectoring strategy consists of multiple plan
steps (e.g., the strategy ‘plan to vector and
turn back’ consists of three plans: ‘delay
vector,’ ‘turn back vector,’ and ‘resume
route’). Some separation rules also address
planning for vectoring aircraft bound to
roles. For example, when an aircraft is
directly behind the ‘back’ aircraft (i.e.,
bound to its ‘behind’ role), agents apply
the strategy ‘plan to match vectors’ to that
aircraft in the same planning pass, so that
the aircraft behind the ‘back ‘aircraft can
be delay-vectored first. Experienced air

traffic controllers have been observed to
use this technique. Conflicts involving
more than two aircraft present a special
case. The agents cannot reasonably sort
out how to plan to turn multiple aircraft,
except when all are merging at the same
point. In this case, the role bindings are
used to establish a sequence, which breaks
the conflict into a number of conflict
pairs.

The agents use knowledge about when
aircraft in their particular sector should
descend in order to hand them off at the
required altitude. Control rules also
incorporate positive altitude separation.
These rules attempt use the aircraft bound
to the role ‘firstConflict’ to gauge whether
the aircraft can be cleared all the way
down to the required sector-exit altitude
for arriving aircraft, or whether an
intermediate altitude above the conflict
aircraft is required. Agents re-address
aircraft cleared to an intermediate altitude
periodically (via ‘check_descent’ beliefs)

If front directly in front and no aircraft behind back:
– If merge, plan to merge
– Otherwise, plan minimal offset

If front directly in front and aircraft behind back:
– If merge, plan to merge
– Otherwise, plan minimal offset and plan to match

vectors for aircraft behind back
If front in front sequentially and no aircraft behind back:

– If merge, plan to turn in to merge
– Otherwise, plan to vector and turn back

If front in front sequentially and aircraft behind back:
– If merge, plan to turn in to merge
– Otherwise, plan to vector and turn back and plan to

match vectors for aircraft behind back

• Multiple aircraft conflicts
– Only handle in cases of merge, using plan to merge or

plan to turn in to merge

Figure 10. CATS ATC agent separation rules.



13

to determine if they can be cleared to a
lower altitude, until the aircraft are cleared
all the way down to the exit altitude for the
sector.

Plans
From the discussion of control rules above,
it is clear that planning plays a critical role
in the successful application of control
strategies. Agents are not capable of
globally assessing clearance options under
the ‘application of heuristics’ scheme
employed in this research. Thus, plans are
constructed of steps that have, based on
their type, a set of conditions under which
the plan should be executed or adapted
(which includes abandoning the overall
plan or a step of the plan altogether).

Several plans (plan ‘steps’) were identified
for inclusion in the planning strategies
used by the control rules. Figure 11 shows
these plans as they relate to the lateral,
vertical, and speed dimensions of control.
Five were never used (shown grayed-out in
Figure 11). The vertical plans are
supplanted by immediate clearances (i.e.,
there was no perceived need to plan these
actions). The lateral plans ‘direct-to,’ and
‘meter fix direct-to’ were also never
needed; the plan ‘return to route’ covers
both of these functions. Lastly, the speed
plan ‘allow to pass’ introduced difficulties
with role bindings (e.g., by its very nature,
at some point the aircraft ‘inFront’

becomes the aircraft ‘behind,’ etc.).
Because the agents bind roles before the
plans are checked for execution, this
created problems. ‘Naturally faster’
aircraft are therefore obliged to stay
behind slower aircraft for spacing, under
this scheme.

The remaining plans shown in Figure 11
combine to cover the control strategies
implemented by the control rules. The
agents use the lateral plans to implement
strategies used in the separation rules.
Lateral planning strategies entail, first, a
plan to ‘delay vector’ (or ‘match planned
lead delay vector’), followed in some cases
by a ‘turn back vector’ (or ‘match
planned lead turn back vector’). Finally,
lateral planning strategies add a ‘return to
route’ plan (or a ‘return to heading’ plan,
if the aircraft has no known route to
rejoin). The agents determine the values of
the vectors encompassed by the plans
using skills in their skill library.

The agents use speed plans to implement
strategies used by the spacing rules. Speed
plans are given in pairs, depending on
whether a Mach number or indicated
airspeed is called for. While the spacing
rules shown in Figure 9 reference only the
‘match lead’ speed or mach plans
explicitly, the agents use the remaining
low-level ‘accelerate’ and ‘decelerate’
speed plans as necessary to implement the
‘stagger speeds’ strategy.

• Lateral plans:
– Delay vector
– Match planned lead delay vector
– Turn back vector
– Match planned lead turn back

vector
– Return to heading
– Return to route
– Direct-to
– Meter fix direct-to
– Return to route-merge

• Vertical plans:
– Climb temporary altitude
– Descend temporary altitude

• Speed plans:
– Match lead speed
– Match lead mach
– Accelerate
– Accelerate-mach
– Decelerate
– Decelerate-mach
– Allow to pass

Figure 11. Plans to implement planning strategies used in control rules.
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A critical feature of each type of plan is
the set of conditions under which the
agents should execute it. Each plan has
conditions for execution that relate to the
control strategy that the agent was
following when developing the plan for an
aircraft. The execution conditions
reference roles that the agents bind to the
plan at the time it is developed. A plan
records, for example, the ‘front’ aircraft
against which proper spacing is to be
measured. In addition, a plan records the
time the agent developed it and, in the case
of turn-back vectors, the value of the
vector and the time at which the agent
plans to execute it.

Figure 12 shows the execution conditions
for speed plans. The execution conditions
reference the agent’s skills to detect
insufficient and excess spacing. For
example, when an agent implements the
strategy termed ‘speed up/plan to match
speeds,’ it clears the ‘back’ aircraft to a
faster speed and also logs a ‘match lead
mach’ plan for it. Each time it executes
the ‘scan aircraft’ activity, the agent
checks whether the ‘back’ aircraft has
closed to the desired distance behind the

‘front’ aircraft referenced by the plan. If
it has, it executes the plan to match the
lead aircraft’s Mach by issuing the
appropriate Mach number as a clearance.
As shown in Figure 13, the conditions for
executing lateral plans are more complex.
Typically, they include conditions for
executing the plan under circumstances
where vectoring skills handled the situation
well, along with some that function as
‘stop-gap measures.’ Such conditions are
required when, for example, the agents
vector aircraft toward a sector boundary,
or when the aircraft flies on a vector past a
waypoint that was to be the point at which
the aircraft rejoined the route. Some
conditions are included to ensure that
aircraft cross the meter fix. Still others
make sure an aircraft is not handed off
before it has been cleared to rejoin its filed
routing, as the plans with which the agent
sought to accomplish that are not
transmitted to the receiving agent; only the
current clearance constraints that the
aircraft is following are transferred. In
short, deficiencies in the agent’s skill
library, together with the dynamics of
addressing various control problems,
necessitate ways to adapt plans to ensure
the agents issue reasonable clearances.

• Speed plans:
– Match lead speed

• Not insufficient spacing & not excess spacing
– Match lead mach

• Not insufficient spacing & not excess spacing
– Accelerate

• Excess spacing
– Accelerate-mach

• Excess spacing
– Decelerate

• Insufficient spacing
– Decelerate-mach

• Insufficient spacing
– Allow to pass

• No conditions (requires ‘naturally faster’ rules to be in
effect)

Figure 12. Execution conditions for speed plans.
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Example Operations
This section presents two examples of how
the agents control traffic. The first
example describes how the agents address
one type of in-trail spacing problem; the
second example describes a ‘merge
problem.’

The example spacing problem is captured
in Figure 14, which depicts a situation with
two in-trail flows moving roughly from
left to right. After receiving a traffic
update from the ADRS, the agent executes
the ‘monitor traffic display’ activity and
acquires the belief that the ‘sector aircraft’
include AAL497, AAL630, and AAL508
(AAL137 is not yet in this set, but will be
shortly). The successful execution of
‘monitor traffic display’ results in the
agent adding the ‘task context’ belief
‘looked at traffic display’ (see Appendix
A), which enables execution of the ‘scan
aircraft’ activity. The agent executes ‘scan
aircraft’ on the next tick, upon which the
agent accesses its skill library to assess the
‘sector aircraft’ traffic. The skill library
checks for conflicts (i.e., separation
problems) and spacing problems, and adds

a ‘within_flow_spacing’ belief for
AAL630 and AAL508. AAL630 is bound
to the role ‘behind’ in the aircraft
AAL508, and AAL508 is bound to the
role ‘inFront’ in AAL630. Successful
completion of the ‘scan aircraft’ activity
installs a ‘have aircraft to work’ belief,
which triggers the ‘determine aircraft to
work’ activity.

When the agent executes ‘determine
aircraft to work’ activity, it notes the
presence of the ‘within_flow_spacing
AAL508 AAL630’ belief in the agent’s
belief set. If the agent has a
‘check_within_flow_spacing’ belief for
this aircraft pair that tells the agent when it
can reasonably re-address this particular
spacing problem, it will move on to other
problems. Similarly if higher priority
problems exist (i.e., aircraft with a plan
that needs to be executed, or aircraft in
conflict — see Figure 5), the agent will
address those problems first. However,
assuming the agent holds neither of these
beliefs, the ‘determine aircraft to work’
activity has the effect of installing a
‘spacing aircraft identified’ belief in the
agent’s belief set. This enables the agent to

• Lateral plans:
– Delay vector

• If handed off, send direct to next waypoint
• If close to Meter Fix, send direct to meter fix
• If planned time, execute as is

– Match planned lead delay vector
• If handed off, send direct to next waypoint
• If close to Meter Fix, send direct to meter fix
• If back aircraft null, execute as is
• If back aircraft doesn’t have a plan to turn out,

execute as is
• If planned time, execute as is

– Turn back vector
• If handed off, send direct to next waypoint
• If close to Meter Fix, send direct to meter fix
• If planned time, execute as is
• If not excess spacing or insufficient spacing,

abandon

– Match planned lead turn back vector
• If handed off, send direct to next waypoint
• If close to Meter Fix, send direct to meter fix
• If front aircraft null, execute as is
• If front aircraft doesn’t have a plan to turn back,

execute as is
• If planned time, execute as is
• If not excess spacing or insufficient spacing,

abandon

– Return to heading
• If handed off, send direct to next waypoint
• If close to sector bounds, execute as is
• If close to Meter Fix, send direct to meter fix
• If not excess spacing or insufficient spacing, abandon

– Return to route
• If handed off, send direct to next waypoint
• If close to sector bounds, execute as is
• If aircraft has passed the next fix, send direct to the

following fix
• If close to Meter Fix, send direct to meter fix
• If not excess spacing or insufficient spacing, abandon

– Direct-to
• (not used- superceded by return to route)

– Meter fix direct-to
• (not used- superceded by return to route)

– Return to route-merge
• If handed off, send direct to next waypoint
• If front aircraft has passed the next fix, execute as is
• If aircraft has missed it’s slot, re-plan to merge
• If have required merge spacing and aircraft has been on a

vector for at least 60 secs, execute as is

Figure 13. Execution conditions for lateral plans.
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execute the ‘evaluate spacing clearance
options’ sub-activity of ‘manage spacing’
on the next tick.

The activity ‘evaluate spacing clearance
options’ actually accesses the agent’s
control rules to determine the appropriate
control strategy. Because AAL508 and
AAL630 are more than ten nautical miles
in trail (plus a small tolerance), the control
rules determine the appropriate strategy is
‘speed up/plan to match speeds’ (see
Figure 9). Using this strategy, the agent
accesses an aircraft performance database,
and sets up a clearance to accelerate
AAL630 to its maximum Mach. It also
logs a plan to ‘match lead mach’ with
AAL630. It completes execution of
‘evaluate spacing clearance options’ by
adding the task context belief ‘know
which aircraft to space’ to the agent’s
current beliefs. Thus, on the next tick, the
agent’s model indicates that the ‘issue
spacing clearance’ activity should be

executed. When the agent executes the
‘issue spacing clearance’ activity, the
agent sends the clearance to accelerate
AAL630 to its maximum Mach to the
ADRS, via the Agent Hub.

Processing then continues, with the agent
checking AAL630’s plan to match the
Mach of AAL508 each time it executes the
‘determine aircraft to work’ activity. At
some point, AAL630 will have closed the
gap with AAL508 — the condition for
executing the ‘match lead mach’ plan. At
this time (assuming this plan is the first
requiring execution that the agent finds),
the agent readies the appropriate clearance
for AAL630, and acquires the ‘know
which aircraft to clear’ belief. On the next
tick, the agent issues the clearance which,
when AAL630 complies, results in proper
in-trail spacing between AAL508 and
AAL630.

Figure 14. Example in-trail spacing problem involving AAL508 and AAL630.
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The second example concerns the merge
situation shown in Figure 15; the figure
shows the solution of merge problem in
progress. The agent first identifies
AAL6080 as in conflict with UAL1114.
When the agent selected this conflict as
highest priority in the ‘determine aircraft
to work’ activity, it performed the
‘evaluate separation clearance options’
activity. The agent accessed its control
rules, and used the role bindings for each
aircraft to determine that the UAL1114 is
in front of AAL6080 sequentially, and that
there is no aircraft immediately behind
AAL6080. It also determined that the two
aircraft are merging at UKW, causing it to
apply the strategy ‘plan to turn in to
merge’ (see Figure 10). When the agent
applied this strategy it cleared AAL6080
to a 095 heading, and logged a ‘return to
route – merge’ plan with AAL6080. The
agent is now in the position to repeatedly
evaluate the conditions for executing this
plan (see Figure 13) each time it executes
the ‘determine aircraft to work’ activity.

After AAL6080 started its turn, the agent

determined that AAL6080 was also in
conflict with DAL323 (see Figure 15). The
agent then followed the same solution
method as it did for the first conflict.
When the agent applied its control rules to
DAL323 and AAL6080, it again
determined that these aircraft are to merge
at UKW, and used the aircraft’s role
bindings to determine that, in this case,
AAL6080 is in front of DAL323
sequentially, and there is no aircraft
behind DAL323. Thus, the agent again
applied the ‘plan to turn in to merge’
strategy (see Figure 10), which resulted in
a 245 heading for DAL323, together with
a plan for DAL323 to ‘return to route –
merge.’

Figure 15 shows the situation after both
AAL6080 and DAL323 have begun to
turn onto their new headings. Each time
the agent executes the ‘determine aircraft
to work’ activity, it evaluates the status of
these aircraft in relation to the aircraft in
front of them at the time their plans were
formulated. After the plans have been in
effect for sixty seconds (to avoid

Figure 15. Example merge problem involving UAL1114, AAL6080, and DAL323.
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immediate turn-backs in certain situations),
the agent checks AAL6080’s distance to
UKW versus UAL1114’s, and DAL323’s
distance to UKW versus AAL6080’s.
Eventually, the agent finds that the
heading vector has produced the required
merge spacing between UAL1114 and
AAL6080, and executes AAL6080’s
‘return to route – merge’ plan. This sets
up a clearance for AAL6080 to proceed
direct UKW. After AAL6080 has begun to
converge on UKW, eventually the
conditions for executing the plan for
DAL323 to ‘return to route – merge’ will
be met, and the agent will issue a clearance
for it, too, to proceed direct UKW,
completing the merge.

In summary, the CATS air traffic
controller agents use periodically updated
data on the state of arrival traffic to
generate a ‘picture’ of the traffic situation.
Agents update beliefs about the situation
by executing activities represented in a
hierarchical model according to beliefs
about the task context. Based on
assessments of what needs to be done, and
a prioritization scheme for choosing the
problems to address, the agents formulate
clearances and issue them, or plan
clearances to issue when the appropriate
conditions are met. To do this, the agents
reference a library of skills for assessing
displayed traffic, and a set of control rules
that incorporate strategies for spacing and
separating aircraft, as well as employing
positive altitude separation. The remainder
of this report offers an appraisal of how
well the agents perform, and discusses
further research.

Performance Assessment
It is impossible to determine how well the
agents perform, and what modifications
might be necessary to improve them,
without applying them to an exhaustive set
of traffic flow conditions and airspace
configurations. However, with an eye
toward their practical use supporting

studies of operational ATC concepts, a
preliminary performance assessment was
conducted. NASA ATM research has
focused on airspace centered on Dallas-
Fort Worth Center (ZFW) with arrival flows
to Dallas/Fort Worth (DFW) airport (for
details on the test airspace and the
concepts under study, see Callantine, et al.,
2001, and Battiste, et al., 2002). Thus,
airspace in this region was chosen for
testing the agents. Agents were
implemented to control the Wichita Falls
High Altitude sector (SPS), the Ardmore
High Altitude sector (ARD), and the sector
responsible for merging arrival flows from
these sectors to cross the BAMBE meter
fix, the Bowie Low Altitude sector (UKW).
Figure 16 shows the architecture for
testing the agent implementation. Figure
17 shows a screen snapshot of the UKW
agent controlling traffic.

Traffic scenarios were derived from those
currently being used as the baseline
scenarios for NASA studies extending the
research reported in Callantine, et al.
(2001), and from current-day traffic flows.
The ‘new concept’ scenarios constructed
specifically for testing advanced ATM
concepts do not necessarily reflect the
traffic flows that the selected sectors would
experience during normal current-day
operations. On the other hand, the
‘current-day’ arrival rushes may be too
difficult to manage without the capability
to issue holding clearances. Thus, as with
all ATM research, traffic scenario selection
poses a problem.

Nonetheless, two ‘new concept’ baseline
scenarios (‘A1’ and ‘B1’) were used as is,
and modified (lightened) twice each, to
produce six test scenarios, and three
additional ‘current-day’ scenarios were
produced by reducing the traffic in a
‘current-day’ scenario (‘C1’), yielding a
total of nine agent test scenarios. Figure 18
shows the number of arrival aircraft in
each
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Agent Hub ADRS

Ardmore Agent (ADM)

Bowie Agent (UKW)�����

Falls High Agent (SPS)

Figure 16. Three-agent test architecture.

Figure 17. Screen snapshot of the UKW agent.
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scenario. Figure 19 shows that the total
time for aircraft to arrive in each condition
was comparable, but the agents were able
to compress the traffic in the ‘A’ group of
scenarios.

For the performance assessment, each of
the nine scenarios was run twice. First each
scenario was run in a ‘descent only’
control condition with agents issuing only
descent clearances to the sector exit
altitude. Each scenario was then run again,
with the agents controlling traffic to the
fullest extent (i.e., issuing speed,
heading/route, and positive altitude
separation clearances). In the descent only
condition, aircraft always remain on their
filed flight plans but, as the results show,
are still subject to some nuances of agent
behavior. Traces of the traffic flows for
each test run appear in Appendix B; the
traces for the descent only condition help
characterize the traffic flow in each
scenario.

In general, the performance assessment
reveals that the agents generally do a good
job handling spacing problems in the high
altitude sectors (SPS and ADM). The
agents are less adept at handling merge
problems, and even less so at handling
difficult multiple merges at the meter fix.
Nonetheless, in no case did the agents fully
controlling traffic produce more
separation violations than in the
uncontrolled (‘descent only’) condition.
The results also show that traffic with a
particularly large number of simultaneous
conflicts (and the relatively large numbers
of plans that may need executing) can
leave the agent little time to perform other,
lower priority tasks. For example, the
results show that when too many aircraft
are merging at the meter fix, the UKW
agent has trouble managing descents. The
agent may descend aircraft to temporary
altitudes, but may fail to issue lower
clearances in time for aircraft to reach the
required sector exit altitude.

Comparison of Arrival Time Between Two Conditions
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Figure 19. Time for all aircraft to cross the
meter fix by scenario and condition.

Figure 18. Number of arrival aircraft in each test scenario.
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Comparison of Separation Violations Between Two 
C o n d i t i o n s
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Figure 20. Number of separation
violations in each scenario for each of the
two conditions.

Breakdown of Separation Violations By Location for 
the Full Control Condition
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the Descent Only Condition
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Figure 21. Location of separation
violations under each condition.

Comparison of Number of Aircraft High at BAMBE 
Between Two Conditions
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Figure 22. Number of aircraft not at the
desired crossing altitude at BAMBE under
each condition.

The results first focus on the number of
separation violations that result under each
of the two conditions. Data produced by
the aircraft simulation were analyzed using
a computer-based analysis program. The
analysis program measures separation
violations stringently. A pair of aircraft
with less than the required vertical
separation registers as a separation
violation when lateral separation falls even
a infinitesimal amount below five nautical
miles (i.e., 4.98 nm counts as a violation).
Figure 20 shows that, for every scenario,
the full-control condition results in fewer
separation violations than occur in the
descent-only condition. For the A and B
scenario sets, the agents created relatively
few separation violations, while for the
more dense traffic in the C scenario set, the
agents created a considerable number of
separation violations.

Figure 21 shows the agents in the full
control condition created a single
separation violation that involved at least
one aircraft that was still in a high altitude
sector in three of the nine scenarios. All
three of these violations were of the
‘barely below five nautical miles’ variety.
The remainder of the violations all
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occurred in the UKW Low Altitude sector,
where the aircraft must merge before
crossing the meter fix. Figure 21 also
shows that, for the descent only condition,
a larger number of separation violations
occurred in the high altitude sectors. In
Appendix B, lines connect points where
spacing minimums were violated (while
not always clearly visible in the charts,
these lines sometimes help visualize where
some violations occurred).

Finally, Figure 22 depicts the problem
noted earlier, in which agents can become
overloaded handling conflicts. The UKW
agent’s performance, in particular, suffers
from this problem. Figure 22 shows that
aircraft failed to achieve the altitude
necessary for crossing the BAMBE meter
fix more frequently in the full control
condition. This problem rarely occurred in
the descent only condition.

Conclusions and Further Research

Overall, the agents perform well in the
High Altitude sectors. However, the UKW
agent can become overloaded easily; too
many merge conflicts and attendant plans
cause the UKW agent to ignore aircraft
that need lower altitude clearances. This is
likely due largely to activities taking one
second to execute, as is currently required
by the agent architecture. The agents also
merge traffic reasonably well, but priorities
should be more flexible, so that aircraft
that require a lower altitude immediately
are sure to receive the clearance. In
general, despite these difficulties, the
agents show considerable promise as tools
for both understanding how air traffic
controllers operate, and for supplanting
expensive, variable human air traffic
controllers in future ATM concept studies.

There is considerable room for refinement
in several areas. First the hub-based
architecture needs to support
asynchronous processing, such that the
agents can execute activities as time

permits (currently, they wait until next
‘tick’ to perform the next activity).
Second, the control rules and skills could
benefit from some refinements. In
particular, the vectoring skills, and the
plans that result when they are applied,
may operate more effectively if based on
specific attributes of the merge that is
taking place.

The notion of improving the flexibility of
the agents is, indeed, overarching. Role
bindings could be performed dynamically
depending on the situation (e.g., spacing
versus merging). Plans could benefit from
more flexible, dynamic adaptation.
Tolerances used by perceptual skills could
be set dynamically depending on the
situation. And timing values used in beliefs
that dictate when a problem can be re-
addressed could similarly be situation-
specific. All of these areas should be
refined with the aid of actual air traffic
controller input, to the extent possible.
One approach would be to take data on
actual controller behavior for
representative classes of control problems,
as was done for particular conflict classes
in the RAMS research (Mondoloni, 1998).

This is but one of several areas of further
research. Other areas include extending
the CATS agent architecture, with its
mechanisms for manipulating an agent’s
beliefs about the task context and control
situation, to enable the agents to make
realistic errors. The error-making
capability could be applied for safety
assessment of ATM concepts. A second
area of research is integrating the ATC
agent capabilities into a compact module
that would enable it to be integrated into a
flexible controller station, in which agent
control could be toggled on and off. Part
of this research will entail enabling the
agents to access advanced ATC automation
tools that play a central role in new ATM
concepts (e.g., Callantine, et al., 2001). A
variety of new skills and control rules will
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require development to support tool usage
by the agents. For example, the agents will
require access to information presented as
a timeline of arrival aircraft, and
functionality designed to predict precise
speeds necessary to meet scheduled meter
fix crossing times. Thus, this report has
presented initial work toward these aims.
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Appendix A

The following is the file specification for the CATS model used by the CATS ATC agents (Table A-1).
Below it, this appendix provides some explanation on how it works.

Table A-1. CATS ATC agent model file specification.

! ATC AGT (Current-Day Operations -- put AC miles-in-trail) generic_0.4.1.proc

! This one uses MULTIPLE RETURN VALUES from act-beliefs

! Changes for beliefs-based situation representation

{ topLevel "Control traffic"

conditions "predicted" "always"

{ function "maintain situation awareness"

conditions "predicted" "always"

{ task "monitor traffic display"

conditions "predicted" "display needs scanning"

act_type "perceptual"

conditions "act-beliefs" ( visually to self "<sector aircraft>.set_value" )

conditions "rslt-beliefs-true" ( and

 ( cognitively to self "looked at traffic display" )

 ( cognitively from self "display needs scanning" ) )

}

{ task "scan aircraft"

conditions "predicted" "looked at traffic display"

act_type "cognitive"

conditions "act-beliefs"

 ( cognitively to self "<traffic>.assess" )

conditions "rslt-beliefs-false" (and

( cognitively from self "looked at traffic display" )

( cognitively to self "display needs scanning" ) )

conditions "rslt-beliefs-true" (and

( cognitively from self "looked at traffic display" )

( cognitively to self "have aircraft to work" ) )

}

} ! end "maintain situation awareness"

{ function "determine aircraft to work"

conditions "predicted" "have aircraft to work"

act_type "cognitive"

conditions "act-beliefs" ( cognitively to self "<aircraft to work>.evaluate" )

conditions "rslt-beliefs-hoa" (and
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( cognitively from self "have aircraft to work" )

( cognitively to self "know which aircraft to accept" ) )

conditions "rslt-beliefs-hoi" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "know which aircraft to hand off" ) )

conditions "rslt-beliefs-td" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "know which aircraft to descend" ) )

conditions "rslt-beliefs-factors" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "factors identified" ) )

conditions "rslt-beliefs-spacing" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "spacing aircraft identified" ) )

conditions "rslt-beliefs-non-conf" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "know which aircraft isn't conforming" ) )

conditions "rslt-beliefs-exec-plan" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "know which aircraft to clear" ) )

conditions "rslt-beliefs-false" (and

( cognitively from self "have aircraft to work" )

( cognitively to self "display needs scanning" ) )

}

{ function "manage handoffs"

conditions "predicted" ( or

"know which aircraft to accept"

"know which aircraft have accepted"

"know which aircraft to hand off"

"know which aircraft is accepted" )

{ task "accept aircraft"

conditions "predicted" ( or

"know which aircraft to accept"

"know which aircraft have accepted" )

{ subtask "accept handoff"

conditions "predicted" "know which aircraft to accept"

act_type "manual"

conditions "act-beliefs"

( manually to "<previous controller>" "<incoming aircraft>.accept" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "looked at traffic display" )

( manually to "<previous controller>" "<incoming aircraft>.accept" )

( cognitively from self "know which aircraft to accept" ) )

! this is in case there is <previous controller> is GHOST

conditions "rslt-beliefs-false" ( and
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( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to accept" ) )

}

! this has to wait for check-in from aircraft

{ subtask "roger check-in"

conditions "predicted" "know which aircraft have accepted"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<incoming aircraft>" "<incoming aircraft>.roger" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft have accepted" ) )

}

}

{ task "initiate handoff"

conditions "predicted" ( or

"know which aircraft to hand off"

"know which aircraft is accepted" )

{ subtask "inform other controller"

conditions "predicted" "know which aircraft to hand off"

act_type "manual"

conditions "act-beliefs"

( manually to "<next controller>" "<outgoing aircraft>.handoff" )

conditions "rslt-beliefs-true" ( and

( manually to "<next controller>" "<outgoing aircraft>.handoff" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to hand off" ) )

! this is in case there is <next controller> is GHOST

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to hand off" ) )

}

! this has to wait for accept from other controller

{ subtask "issue frequency change"

conditions "predicted" "know which aircraft is accepted"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<outgoing aircraft>" "<outgoing aircraft>.freq_change" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft is accepted" ) )

}

}
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}

{ function "manage descents"

conditions "predicted" "know which aircraft to descend"

{ task "issue descent clearance"

conditions "predicted" "know which aircraft to descend"

act_type "verbal"

conditions "act-beliefs"

( cognitively to self "<descent aircraft>.assign_alt" )

conditions "rslt-beliefs-true" ( and

( verbally to "<descent aircraft>" "<descent aircraft>.descend" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to descend" ) )

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to descend" ) )

}

}

{ function "manage separation"

conditions "predicted" ( or

"factors identified"

"know which aircraft to clear" )

{ task "evaluate separation clearance options"

conditions "predicted" "factors identified"

act_type "cognitive"

conditions "act-beliefs"

( cognitively to self "<separation aircraft>.evaluate_and_set" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "know which aircraft to clear" )

( cognitively from self "factors identified" ) )

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "factors identified" ) )

}

{ task "issue separation clearance"

conditions "predicted" "know which aircraft to clear"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<aircraft to clear>" "<aircraft to clear>.clear" )

conditions "rslt-beliefs-true" ( and

( verbally to "<aircraft to clear>" "<aircraft to clear>.issue" )
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( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to clear" ) )

}

}

{ function "manage spacing"

conditions "predicted" ( or "spacing aircraft identified"

"know which aircraft to space" )

{ task "evaluate spacing clearance options"

conditions "predicted" "spacing aircraft identified"

act_type "cognitive"

conditions "act-beliefs"

( cognitively to self "<spacing aircraft>.evaluate_and_set" )

conditions "rslt-beliefs-true" ( and

( cognitively to self "know which aircraft to space" )

( cognitively from self "spacing aircraft identified" ) )

conditions "rslt-beliefs-false" ( and

( cognitively to self "looked at traffic display" )

( cognitively from self "spacing aircraft identified" ) )

}

{ task "issue spacing clearance"

conditions "predicted" "know which aircraft to space"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<aircraft to space>" "<aircraft to space>.clear" )

conditions "rslt-beliefs-true" ( and

( verbally to "<aircraft to space>" "<aircraft to space>.issue" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft to space" ) )

}

}

{ function "manage non-conformance"

conditions "predicted" "know which aircraft isn't conforming"

{ task "re-issue clearance"

conditions "predicted" "know which aircraft isn't conforming"

act_type "verbal"

conditions "act-beliefs"

( verbally to "<non-conforming aircraft>" "<non-conforming aircraft>.re-clear"

)

conditions "rslt-beliefs-true" ( and
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( verbally to "<non-conforming aircraft>" "<non-conforming aircraft>.issue" )

( cognitively to self "looked at traffic display" )

( cognitively from self "know which aircraft isn't conforming" ) )

}

}

}

The file specification specifies information about the hierarchy of activities represented in the model. It also
specifies the conditions under which they are ‘predicted’ (i.e., executed, in the case of CATS agents), what
underlying skills and control rules an activity must access to execute, and what the agent’s task context
beliefs should reflect after they have executed an activity. The model specifies the activity hierarchy using
‘curly brackets.’ Activities are designated as “function,” “task,” etc., for no particular reason, except that
past CATS implementations have used such designations (see Callantine, Mitchell, and Palmer, 1999, for
discussion of the CATS model’s roots in Operator Function Model methodology).

After an activity’s name is information about the activity’s type (‘cognitive,’ ‘perceptual,’ ‘verbal,’ or
‘manual’), and a series of ‘conditions’ expressions. The first (order doesn’t really matter, but an order is
maintained for readability) is the conditions under which the activity is ‘predicted.’ These conditions
reference task context beliefs. The second is ‘act-beliefs.’ This is the key expression for accessing
underlying knowledge about how various beliefs get transformed by the so-called ‘Belief Transformer’
module in Figure 2 of the main text. Inspection of the model finds examples such as "<sector
aircraft>.set_value", "<aircraft to work>.evaluate", "<separation aircraft>.evaluate_and_set", etc. These
identifiers cue methods in the Belief Transformer module to perform the indicated manipulations by
accessing the agent’s skill library and control rules. The belief transformer installs the required beliefs in the
agent’s belief set, and returns a value that tells the agent how to adjust its task context beliefs.

The best example of this is what happens when the Belief Transformer is sent the cue "<aircraft to
work>.evaluate" when an agent executes the activity ‘determine aircraft to work.’ Based on the priorities
described in the main text (Figure 5), the Belief Transformer finds, first, whether there are any beliefs in the
agent’s belief set that say an aircraft with an executable plan exists (‘plan_exec [aircraft]’). If so, the Belief
transformer returns a PLAN_EXEC value, which in turn tells the agent to adjust its task context according
to the ‘conditions "rslt-beliefs-exec-plan"’ clause in the model, and so on, for all the other outcomes. In this
example, the task context information ‘know which aircraft to clear’ gets added to the agent’s belief set. An
interesting twist is, in evaluating plans to execute, the control rules actually set the value of the aircraft to
clear, and the clearance value specified by the plan, so that when the activity ‘issue separation clearance’
fires (because its ‘predicted’ conditions are ‘know which aircraft to clear’), and sends the cue "<aircraft to
clear>.clear”’ to the Belief Transformer, the Belief Transformer ‘knows’ which aircraft and what clearance is
intended.

While a bit confusing, this scheme allows knowledge that resides in code to operate in concert with
knowledge provided by the CATS model file specification. Earlier CATS agent applications (Callantine,
2001) use a similar scheme. Activity tracking applications (Callantine, Mitchell, and Palmer, 1999) are
able to encapsulate all the required knowledge except rules for activating ‘context specifiers’ in the model
file specification.
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Appendix B

This appendix shows traffic flows for each of the scenarios in each of the two conditions. The traffic traces
are shown in pairs, with the full control condition on the top, and the descent only condition on the
bottom.
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Figure B-1. Flows for scenario A-1.
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Figure B-2. Flows for scenario A-2.
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Figure B-1. Flows for scenario A-3.
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Figure B-4. Flows for scenario B-1.



36

Figure B-5. Flows for scenario B-2.
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Figure B-6. Flows for scenario B-3.
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Figure B-7. Flows for scenario C-1.
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Figure B-8. Flows for scenario C-2.
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Figure B-9. Flows for scenario C-3.


